Need Help Finding a Service?
CLICK HERE - It's Free
  
11/15/2018

Add Environmental
Yellow Pages
To Your Site

Business Center
Business Reviews
Free Directories
Upgrade Your Listing
Environmental Bids & RFP Services
Financing Available
Dust Collectors
Mist Eliminators
Precipitators
Incinerators
Scrubbers
Filters
Ammonia Slip Analyzers
Chemiluminescence Analyzers
CO Analyzers
CO2 Analyzers
Flame Ionization Analyzers
HC Analyzers
Infrared Analyzers
Multi-Point Samplers
NOX Analyzers
Paramagnetic Analyzers
Photoacoustic Analyzers
Photoacoustic IR Analyzers
Process Control Analyzers
Tracer Gas Systems
VOC Analyzers
Remediation
WMD Equipment
Air Monitoring
PID Rental
Water Quality
Water Sampling
NFPA Labels
Waste Labels
Flammable Labels
Lighting Equipment
Pumping Equipment
Cubic Yard Boxes
55 Gallon Drums
Hazardous Waste Drums
Overpack Drums
Plastic Drums
Submit Resume
View Resumes
Environmental
Insurance
Reports & Mapping
Environmental
Software
Tank Inspection Services
Mold & Mildew Info
Mold Franchise
Mold Test Kits
Mold Training
OSHA Training
EPA Training
Wetland Training
Pumps
Water Wastewater
Grease Trap Bacteria
Pond Bacteria
Septic Tank Bacteria
* Celebrating our 22th year *
[ Home > Resources > Education > Periodic Table of the Elements ]
Curium

Atomic Number:

96

Atomic Symbol:

Cm

Atomic Weight:

247

Electron Configuration: [Rn]7s25f76d1

History

(Pierre and Marie Curie) Although curium follows americium in the periodic system, it was actually known before americium and was the third transuranium element to be discovered. It was identified by Seaborg, James, and Ghiorso in 1944 at the wartime Metallurgical Laboratory in Chicago as a result of helium-ion bombardment of 239Pu in the Berkeley, California, 60-inch cyclotron. Visible amounts (30Mg) of 242Cm, in the form of the hydroxide, were first isolated by Werner and Perlman of the University of California in 1947. In 1950, Crane, Wallmann, and Cunningham found that the magnetic susceptibility of microgram samples of CmF3 was of the same magnitude as that of GdF3. This provided direct experimental evidence for assigning an electronic configuration to Cm+3.  In 1951, the same workers prepared curium in its elemental form for the first time. Fourteen isotopes of curium are now known. The most stable, 247Cm, with a half-life of 16 million years, is so short compared to the earth's age that any primordial curium must have disappeared long ago from the natural scene. Minute amounts of curium probably exist in natural deposits of uranium, as a result of a sequence of neutron captures and beta decays sustained by the very low flux of neutrons naturally present in uranium ores. The presence of natural curium, however, has never been detected. 242Cm and 244Cm are available in multigram quantities. 248Cm has been produced only in milligram amounts. Curium is similar in some regards to gadolinium, its rare earth homolog, but it has a more complex crystal structure. Curium is silver in color, is chemically reactive, and is more electropositive than aluminum. Most compounds of trivalent curium are faintly yellow in color. 242 Cm generates about three watts of thermal energy per gram. This compares to one-half watt per gram of 238Pu. This suggests use for curium as a power source. 244Cm is now offered for sale at $100/mg. Curium absorbed into the body accumulates in the bones, and is therefore very toxic as its radiation destroys the red-cell forming mechanism. The maximum permissible total body burden of 244Cm (soluble) in a human being is 0.3 microcurie.