Need Help Finding a Service?
CLICK HERE - It's Free
  
06/24/2018

Add Environmental
Yellow Pages
To Your Site

Business Center
Business Reviews
Free Directories
Upgrade Your Listing
Environmental Bids & RFP Services
Financing Available
Dust Collectors
Mist Eliminators
Precipitators
Incinerators
Scrubbers
Filters
Ammonia Slip Analyzers
Chemiluminescence Analyzers
CO Analyzers
CO2 Analyzers
Flame Ionization Analyzers
HC Analyzers
Infrared Analyzers
Multi-Point Samplers
NOX Analyzers
Paramagnetic Analyzers
Photoacoustic Analyzers
Photoacoustic IR Analyzers
Process Control Analyzers
Tracer Gas Systems
VOC Analyzers
Remediation
WMD Equipment
Air Monitoring
PID Rental
Water Quality
Water Sampling
NFPA Labels
Waste Labels
Flammable Labels
Lighting Equipment
Pumping Equipment
Cubic Yard Boxes
55 Gallon Drums
Hazardous Waste Drums
Overpack Drums
Plastic Drums
Submit Resume
View Resumes
Environmental
Insurance
Reports & Mapping
Environmental
Software
Tank Inspection Services
Mold & Mildew Info
Mold Franchise
Mold Test Kits
Mold Training
OSHA Training
EPA Training
Wetland Training
Pumps
Water Wastewater
Grease Trap Bacteria
Pond Bacteria
Septic Tank Bacteria
* Celebrating our 22th year *
[ Home > Resources > Education > Periodic Table of the Elements ]
Aluminum

For soda cans.

Atomic Number: 13
Atomic Symbol: Al
Atomic Weight: 26.98154
Electron Configuration: 2-8-3

History

(L. alumen, alum) The ancient Greeks and Romans used alum as an astringent and as a mordant in dyeing. In 1761 de Morveau proposed the name alumine for the base in alum, and Lavoisier, in 1787, thought this to be the oxide of a still undiscovered metal.

Wohler is generally credited with having isolated the metal in 1827, although an impure form was prepared by Oersted two years earlier. In 1807, Davy proposed the name aluminum for the metal, undiscovered at that time, and later agreed to change it to aluminum. Shortly thereafter, the name aluminum was adopted to conform with the "ium" ending of most elements, and this spelling is now in use elsewhere in the world.

Aluminium was also the accepted spelling in the U.S. until 1925, at which time the American Chemical Society officially decided to use the name aluminum thereafter in their publications.

Sources

The method of obtaining aluminum metal by the electrolysis of alumina dissolved in cryolite was discovered in 1886 by Hall in the U.S. and at about the same time by Heroult in France. Cryolite, a natural ore found in Greenland, is no longer widely used in commercial production, but has been replaced by an artificial mixture of sodium, aluminum, and calcium fluorides.

Aluminum can now be produced from clay, but the process is not economically feasible at present. Aluminum is the most abundant metal to be found in the earth's crust (8.1%), but is never found free in nature. In addition to the minerals mentioned above, it is found in granite and in many other common minerals.

Properties

Pure aluminum, a silvery-white metal, possesses many desirable characteristics. It is light, it is nonmagnetic and nonsparking, stands second among metals in the scale of malleability, and sixth in ductility.

Uses

It is extensively used for kitchen utensils, outside building decoration, and in thousands of industrial applications where a strong, light, easily constructed material is needed.

Although its electrical conductivity is only about 60% that of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but it can be alloyed with small amounts of copper, magnesium, silicon, manganese, and other elements to impart a variety of useful properties.

These alloys are of vital importance in the construction of modern aircraft and rockets. Aluminum, evaporated in a vacuum, forms a highly reflective coating for both visible light and radiant heat. These coatings soon form a thin layer of the protective oxide and do not deteriorate as do silver coatings. They are used to coat telescope mirrors and to make decorative paper, packages, toys.

Compounds

The compounds of greatest importance are aluminum oxide, the sulfate, and the soluble sulfate with potassium (alum). The oxide, alumina, occurs naturally as ruby, sapphire, corundum, and emery, and is used in glassmaking and refractories. Synthetic ruby and sapphire are used in lasers for producing coherent light.